Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 24(10): e55043, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37551717

RESUMO

The cardiac endothelium influences ventricular chamber development by coordinating trabeculation and compaction. However, the endothelial-specific molecular mechanisms mediating this coordination are not fully understood. Here, we identify the Sox7 transcription factor as a critical cue instructing cardiac endothelium identity during ventricular chamber development. Endothelial-specific loss of Sox7 function in mice results in cardiac ventricular defects similar to non-compaction cardiomyopathy, with a change in the proportions of trabecular and compact cardiomyocytes in the mutant hearts. This phenotype is paralleled by abnormal coronary artery formation. Loss of Sox7 function disrupts the transcriptional regulation of the Notch pathway and connexins 37 and 40, which govern coronary arterial specification. Upon Sox7 endothelial-specific deletion, single-nuclei transcriptomics analysis identifies the depletion of a subset of Sox9/Gpc3-positive endocardial progenitor cells and an increase in erythro-myeloid cell lineages. Fate mapping analysis reveals that a subset of Sox7-null endothelial cells transdifferentiate into hematopoietic but not cardiomyocyte lineages. Our findings determine that Sox7 maintains cardiac endothelial cell identity, which is crucial to the cellular cross-talk that drives ventricular compaction and coronary artery development.


Assuntos
Vasos Coronários , Células Endoteliais , Animais , Camundongos , Vasos Coronários/metabolismo , Células Endoteliais/metabolismo , Miócitos Cardíacos/metabolismo , Regulação da Expressão Gênica , Endotélio/metabolismo , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo
2.
ACS Appl Nano Mater ; 4(4): 3843-3851, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37556232

RESUMO

Abnormal concentrations of a specific protein or the presence of some biomarker proteins may indicate life-threatening diseases. Pattern-based detection of specific analytes using affinity-regulated receptors is one of the potential alternatives to specific antigen-antibody-based detection. In this report, we have schemed a sensor array by using various functionalized two-dimensional (2D)-MoS2 nanosheets and green fluorescent protein (GFP) as the receptor and the signal transducer, respectively. Two-dimensional MoS2 has been used as a promising candidate for recognition of the bioanalytes because of its high surface-to-volume ratio compared to those of other nanomaterials. Easy surface tunability of this material provides additional advantages to analyze the target of interest. The optimized 2D-MoS2-GFP conjugates are able to discriminate 15 different proteins at 50 nM concentration with a detection limit of 1 nM. Moreover, proteins in the binary mixture and in the presence of serum were discriminated successfully. Ten different proteins in serum media at relevant concentrations were classified successfully with 100% jackknifed classification accuracy, which proves the potentiality of the above system. We have also implemented and discussed the implication of using different machine learning models on the pattern recognition problem associated with array-based sensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...